Сетуха, Алексей Викторович — различия между версиями

Материал из Вики ВМК МГУ
Перейти к: навигация, поиск
(Биография)
(Ссылки)
 
(не показано 9 промежуточных версий этого же участника)
Строка 3: Строка 3:
  
 
==Биография==
 
==Биография==
Родился 4.09.1966, г. Киев. Доцент кафедры; заведующий кафедрой Военно-воздушной инженерной академии им. Н.Е. Жуковского.
+
Родился 4 сентября 1966 года в [[Киев]]е. Окончил физико-математическую [[Школа-интернат № 18 при МГУ|школу-интернат № 18 при МГУ]] (1983), [[Мехмат МГУ|механико-математический факультет МГУ]] (с отличием, 1988).
  
Окончил физико-математическую школу-интернат № 18 при МГУ (1983), механико-математический факультет МГУ отличием, 1988).
+
Кандидат физико-математических наук (1994), тема диссертации: ''«Исследование сходимости метода дискретных вихрей в нелинейной задаче об обтекании пластинки»'' (научный руководитель И. К. Лифанов). Доктор физико-математических наук (2004), тема диссертации: ''«Численные методы решения некоторых краевых задач с обобщенными граничными условиями и их приложения к аэродинамике»''. Ученое звание — [[Профессор (звание)|профессор]] (2010).
 +
Член научно-методического совета по математике при министерстве образования и науки РФ 2008). Сопредседатель оргкомитета международных симпозиумов «Методы дискретных особенностей в задачах математической физики — МДОЗМФ». Заместитель председателя диссертационного совета при Военно-воздушной инженерной академии им. Н. Е. Жуковского.
  
Кандидат физико-математических наук (1994), тема диссертации: «Исследование сходимости метода дискретных вихрей в нелинейной задаче об обтекании пластинки» (научный руководитель И.К. Лифанов). Доктор физико-математических наук (2004), тема диссертации: «Численные методы решения некоторых краевых задач с обобщенными граничными условиями и их приложения к аэродинамике». Ученое звание — доцент (1998).
+
После окончания МГУ работал в Военно-воздушной инженерной академии им. Н. Е. Жуковского в должностях инженера, старшего преподавателя (1994–1996), доцента (1996–2002), профессора (с 2002). С 2007 г. — заведующий кафедрой Высшей математики ВВИА. Профессор кафедры прикладной математики Московского института радиотехники, электроники и автоматики (с 2007).
 
 
Член научно-методического совета по математике при министерстве образования и науки РФ (с 2008). Сопредседатель оргкомитета международных симпозиумов «Методы дискретных особенностей в задачах математической физики — МДОЗМФ». Заместитель председателя диссертационного совета при Военно-воздушной инженерной академии им. Н.Е. Жуковского.
 
 
 
После окончания МГУ работал в Военно-воздушной инженерной академии им. Н.Е. Жуковского в должностях инженера, старшего преподавателя (1994–1996), доцента (1996–2002), профессора (с 2002). С 2007 г. — заведующий кафедрой Высшей математики ВВИА. Профессор кафедры прикладной математики Московского института радиотехники, электроники и автоматики (с 2007).
 
  
 
В Московском университете работает по совместительству в должности доцента кафедры ВТМ факультета ВМК (с 2007).
 
В Московском университете работает по совместительству в должности доцента кафедры ВТМ факультета ВМК (с 2007).
  
Область научных интересов: интегральные уравнения математической физики, численные методы в интегральных уравнениях, математическая гидродинамика, вычислительная гидродинамика.
+
'''''Область научных интересов''''': интегральные уравнения математической физики, численные методы в интегральных уравнениях, математическая гидродинамика, вычислительная гидродинамика.
  
 
К наиболее значительным результатам А.В. Сетухи относятся: обоснование разрешимости и численного метода решения краевой задачи Неймана в случае, когда правая часть в граничном условии есть обобщенная функция; обоснование равномерной сходимости метода вихревых рамок для двумерного гиперсингулярного интегрального уравнения с интегралом, понимаемым в смысле конечного значения по Адамару; обоснование сходимости вихревого численного метода решения уравнения эволюции тангенциальных разрывов в жидкости в классе аналитических функций; разработка (совм. с В.Ю. Кирякиным и И.К. Лифановым) комплекса программ по расчету аэродинамики зданий и сооружений вихревыми методами (по данному комплексу программ выполнено более 80 работ по расчету ветровой ситуации вблизи проектируемых комплексов высотных зданий и сооружений в г. Москве); разработка (совм. с В.А. Апариновым, В.Ю. Кирякиным, В.И. Морозовым) комплекса вычислительных программ по расчету аэроупругих характеристик парашютов, внедренного в ФГУП «НИИ Парашютостроения».
 
К наиболее значительным результатам А.В. Сетухи относятся: обоснование разрешимости и численного метода решения краевой задачи Неймана в случае, когда правая часть в граничном условии есть обобщенная функция; обоснование равномерной сходимости метода вихревых рамок для двумерного гиперсингулярного интегрального уравнения с интегралом, понимаемым в смысле конечного значения по Адамару; обоснование сходимости вихревого численного метода решения уравнения эволюции тангенциальных разрывов в жидкости в классе аналитических функций; разработка (совм. с В.Ю. Кирякиным и И.К. Лифановым) комплекса программ по расчету аэродинамики зданий и сооружений вихревыми методами (по данному комплексу программ выполнено более 80 работ по расчету ветровой ситуации вблизи проектируемых комплексов высотных зданий и сооружений в г. Москве); разработка (совм. с В.А. Апариновым, В.Ю. Кирякиным, В.И. Морозовым) комплекса вычислительных программ по расчету аэроупругих характеристик парашютов, внедренного в ФГУП «НИИ Парашютостроения».
Строка 25: Строка 22:
 
Автор более 100 научных публикаций. Основные работы:  
 
Автор более 100 научных публикаций. Основные работы:  
 
*«Численные методы в интегральных уравнениях и их приложения» (2014);
 
*«Численные методы в интегральных уравнениях и их приложения» (2014);
 +
*Low Rank Methods of Approximationin an Electromagnetic Problem Aparinov A.A., Setukha A.V., Stavtsev S.L. в журнале Lobachevskii Journal of Mathematics, издательство Kazanskii Gosudarstvennyi Universitet/Kazan State University (Russian Federation), 2019, том 40, № 11, с. 1771-1780;
 +
* Метод граничных интегральных уравнений с гиперсингулярнымиинтегралами в краевых задачах // в журнале Итоги науки и техники. Серия "Современная математика и ее приложения. Тематические обзоры", 2019, том 160, с. 114-125;
 
*Обоснование метода дискретных вихрей в задаче о движении конечной вихревой пелены при аналитических начальных условиях // Дифференц. уравнения, 1996, т. 32, № 9, с. 1272–1279;  
 
*Обоснование метода дискретных вихрей в задаче о движении конечной вихревой пелены при аналитических начальных условиях // Дифференц. уравнения, 1996, т. 32, № 9, с. 1272–1279;  
 
*Трехмерная краевая задача Неймана с обобщенными граничными условиями и уравнение Прандтля // Дифференц. уравнения, 2003, т. 39, № 9, с. 1188–1200;  
 
*Трехмерная краевая задача Неймана с обобщенными граничными условиями и уравнение Прандтля // Дифференц. уравнения, 2003, т. 39, № 9, с. 1188–1200;  
 
*О моделировании аэродинамики зданий и сооружений методом замкнутых вихревых рамок // Изв. РАН МЖГ, 2006, № 4, с. 78–92 (соавт. Гутников В.А., Лифанов И.К.);  
 
*О моделировании аэродинамики зданий и сооружений методом замкнутых вихревых рамок // Изв. РАН МЖГ, 2006, № 4, с. 78–92 (соавт. Гутников В.А., Лифанов И.К.);  
 
*Сингулярное интегральное уравнение с ядром Гильберта в классе обобщенных функций // Дифференц. уравнения, 2006, т. 42, № 9, с. 1233–1242.
 
*Сингулярное интегральное уравнение с ядром Гильберта в классе обобщенных функций // Дифференц. уравнения, 2006, т. 42, № 9, с. 1233–1242.
 +
 +
== Литература ==
 +
* Факультет Вычислительной математики и кибернетики: История и современность: Биографический справочник / Автор-составитель Е. А. Григорьев. — М.: Издательство Московского университета, 2010. — С. 236—237. — 616 с. — 1 500 экз. — ISBN 978-5-211-05838-5.
 +
 +
== Ссылки ==
 +
* [https://cs.msu.ru/persons/setukha-a-v Сетуха Алексей Викторович (ВМК МГУ)]
 +
* [https://istina.msu.ru/profile/Setukha/ Научные работы А. В. Сетухи ([[ИСТИНА МГУ]])]
 +
* [http://www.mathnet.ru/rus/person53819 Сетуха Алексей Викторович (Mathnet)]
 +
* [http://letopis.msu.ru/peoples/5737 Сетуха Алексей Викторович (Летопись Московского университета)]
 +
 +
[[Категория:Выпускники СУНЦ МГУ]]
 +
[[Категория:Преподаватели факультета вычислительной математики и кибернетики]]
 +
[[Категория:Доктора наук]]
 +
[[Категория:Профессора по званию]]

Текущая версия на 08:37, 15 апреля 2020

А. В. Сетуха

Алексей Викторович Сетуха (род. 1966) — математик, доктор физико-математических наук, профессор кафедры вычислительных технологий и моделирования факультета ВМК МГУ, заведующий кафедрой Военно-воздушной инженерной академии им. Н. Е.Жуковского.

Биография

Родился 4 сентября 1966 года в Киеве. Окончил физико-математическую школу-интернат № 18 при МГУ (1983), механико-математический факультет МГУ (с отличием, 1988).

Кандидат физико-математических наук (1994), тема диссертации: «Исследование сходимости метода дискретных вихрей в нелинейной задаче об обтекании пластинки» (научный руководитель И. К. Лифанов). Доктор физико-математических наук (2004), тема диссертации: «Численные методы решения некоторых краевых задач с обобщенными граничными условиями и их приложения к аэродинамике». Ученое звание — профессор (2010). Член научно-методического совета по математике при министерстве образования и науки РФ (с 2008). Сопредседатель оргкомитета международных симпозиумов «Методы дискретных особенностей в задачах математической физики — МДОЗМФ». Заместитель председателя диссертационного совета при Военно-воздушной инженерной академии им. Н. Е. Жуковского.

После окончания МГУ работал в Военно-воздушной инженерной академии им. Н. Е. Жуковского в должностях инженера, старшего преподавателя (1994–1996), доцента (1996–2002), профессора (с 2002). С 2007 г. — заведующий кафедрой Высшей математики ВВИА. Профессор кафедры прикладной математики Московского института радиотехники, электроники и автоматики (с 2007).

В Московском университете работает по совместительству в должности доцента кафедры ВТМ факультета ВМК (с 2007).

Область научных интересов: интегральные уравнения математической физики, численные методы в интегральных уравнениях, математическая гидродинамика, вычислительная гидродинамика.

К наиболее значительным результатам А.В. Сетухи относятся: обоснование разрешимости и численного метода решения краевой задачи Неймана в случае, когда правая часть в граничном условии есть обобщенная функция; обоснование равномерной сходимости метода вихревых рамок для двумерного гиперсингулярного интегрального уравнения с интегралом, понимаемым в смысле конечного значения по Адамару; обоснование сходимости вихревого численного метода решения уравнения эволюции тангенциальных разрывов в жидкости в классе аналитических функций; разработка (совм. с В.Ю. Кирякиным и И.К. Лифановым) комплекса программ по расчету аэродинамики зданий и сооружений вихревыми методами (по данному комплексу программ выполнено более 80 работ по расчету ветровой ситуации вблизи проектируемых комплексов высотных зданий и сооружений в г. Москве); разработка (совм. с В.А. Апариновым, В.Ю. Кирякиным, В.И. Морозовым) комплекса вычислительных программ по расчету аэроупругих характеристик парашютов, внедренного в ФГУП «НИИ Парашютостроения».

На факультете ВМК читает спецкурс «Численные методы в интегральных уравнениях».

Подготовил 6 кандидатов наук.

Автор более 100 научных публикаций. Основные работы:

  • «Численные методы в интегральных уравнениях и их приложения» (2014);
  • Low Rank Methods of Approximationin an Electromagnetic Problem Aparinov A.A., Setukha A.V., Stavtsev S.L. в журнале Lobachevskii Journal of Mathematics, издательство Kazanskii Gosudarstvennyi Universitet/Kazan State University (Russian Federation), 2019, том 40, № 11, с. 1771-1780;
  • Метод граничных интегральных уравнений с гиперсингулярнымиинтегралами в краевых задачах // в журнале Итоги науки и техники. Серия "Современная математика и ее приложения. Тематические обзоры", 2019, том 160, с. 114-125;
  • Обоснование метода дискретных вихрей в задаче о движении конечной вихревой пелены при аналитических начальных условиях // Дифференц. уравнения, 1996, т. 32, № 9, с. 1272–1279;
  • Трехмерная краевая задача Неймана с обобщенными граничными условиями и уравнение Прандтля // Дифференц. уравнения, 2003, т. 39, № 9, с. 1188–1200;
  • О моделировании аэродинамики зданий и сооружений методом замкнутых вихревых рамок // Изв. РАН МЖГ, 2006, № 4, с. 78–92 (соавт. Гутников В.А., Лифанов И.К.);
  • Сингулярное интегральное уравнение с ядром Гильберта в классе обобщенных функций // Дифференц. уравнения, 2006, т. 42, № 9, с. 1233–1242.

Литература

  • Факультет Вычислительной математики и кибернетики: История и современность: Биографический справочник / Автор-составитель Е. А. Григорьев. — М.: Издательство Московского университета, 2010. — С. 236—237. — 616 с. — 1 500 экз. — ISBN 978-5-211-05838-5.

Ссылки